113 research outputs found

    Two-Color Magneto-Optical Trap with Small Magnetic Field for Ytterbium

    Get PDF
    We report a two-color magneto-optical trap (MOT) for ytterbium atoms operating at a low magnetic field gradient down to 2 G/cm where a conventional MOT using the singlet transition (6s^2 1S0 -> 6s6p 1P1) is unable to trap atoms. By simultaneously applying laser light on both the broad-linewidth singlet transition and the narrow-linewidth triplet transition (6s^2 1S0 -> 6s6p 3P1), we load and trap 4.0 x 10^5 atoms directly from an atomic beam at 700 K. In the two-color MOT, the slowing and trapping functions are separately performed by the singlet transition light and the triplet transition light, respectively. The two-color MOT is highly robust against laser power imbalance even at very low magnetic field gradients.Comment: 6 pages, 5 figure

    Implementation of Cavity Squeezing of a Collective Atomic Spin

    Full text link
    We squeeze unconditionally the collective spin of a dilute ensemble of laser-cooled rubidium-87 atoms using their interaction with a driven optical resonator. The shape and size of the resulting spin uncertainty region are well described by a simple analytical model [M.H.S., I.D.L., V.V., arXiv:0911.3936] through two orders of magnitude in the effective interaction strength, without free parameters. We deterministically generate states with up to 5.6(6) dB of metrologically relevant spin squeezing on the canonical rubidium-87 hyperfine clock transition.Comment: 4 pages, 2 figures. To be published in Phys. Rev. Lett. Some additional details and clarified wording in response to referee comments. Figures and results unchange

    Fast Compact Laser Shutter Using a Direct Current Motor and 3D Printing

    Get PDF
    We present a mechanical laser shutter design that utilizes a DC electric motor to rotate a blade which blocks and unblocks a light beam. The blade and the main body of the shutter are modeled with computer aided design (CAD) and are produced by 3D printing. Rubber flaps are used to limit the blade's range of motion, reducing vibrations and preventing undesirable blade oscillations. At its nominal operating voltage, the shutter achieves a switching speed of (1.22 ±\pm 0.02) m/s with 1 ms activation delay and 10 μ\mus jitter in its timing performance. The shutter design is simple, easy to replicate, and highly reliable, showing no failure or degradation in performance over more than 10810^8 cycles.Comment: 4 pages, 6 figures; supplementary materials for shutter replication added under "Ancillary files

    Large conditional single-photon cross-phase modulation

    Get PDF
    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π\pi through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to π/3\pi/3 between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of π\pi at low loss, enabling deterministic and universal photonic quantum logic.Comment: 22 pages, 5 figures, 1 table, includes supplementary informatio

    Squeezing the Collective Spin of a Dilute Atomic Ensemble by Cavity Feedback

    Full text link
    We propose and analyze a simple method to squeeze dynamically and unconditionally the collective spin of a dilute atomic ensemble by interaction with a driven mode of an optical resonator, as recently demonstrated [I. D. L., M. H. S., and V. V., Phys. Rev. Lett. 104, 073602 (2010)]. We show that substantial squeezing can be achieved in the regime of strong collective ensemble-resonator coupling. The squeezing is ultimately limited either by photon emission into free space or by the curvature of the Bloch sphere. We derive both limits and show where each prevails.Comment: 4 pages, 2 figures. Minor revision. To appear in Phys. Rev.

    Entangled collective-spin states of atomic ensembles under non-uniform atom-light interaction

    Get PDF
    We consider the optical generation and verification of entanglement in atomic ensembles under non-uniform interaction between the ensemble and an optical mode. We show that for a wide range of parameters a system of non-uniformly coupled atomic spins can be described as an ensemble of uniformly coupled spins with a reduced effective atom-light coupling and a reduced effective atom number, with a reduction factor of order unity given by the ensemble-mode geometry. This description is valid even for complex entangled states with arbitrary phase-space distribution functions as long as the detection does not resolve single spins. Furthermore, we derive an analytic formula for the observable entanglement in the case, of relevance in practice, where the ensemble-mode coupling differs between state generation and measurement.Comment: 5 pages, 3 figure

    Partially Nondestructive Continuous Detection of Individual Traveling Optical Photons

    Get PDF
    We report the continuous and partially nondestructive measurement of optical photons. For a weak light pulse traveling through a slow-light optical medium (signal), the associated atomic-excitation component is detected by another light beam (probe) with the aid of an optical cavity. We observe strong correlations of gsp(2)=4.4(5)g^{(2)}_{sp}=4.4(5) between the transmitted signal and probe photons. The observed (intrinsic) conditional nondestructive quantum efficiency ranges between 13% and 1% (65% and 5%) for a signal transmission range of 2% to 35%, at a typical time resolution of 2.5 μ\mus. The maximal observed (intrinsic) device nondestructive quantum efficiency, defined as the product of the conditional nondestructive quantum efficiency and the signal transmission, is 0.5% (2.4%). The normalized cross-correlation function violates the Cauchy-Schwarz inequality, confirming the non-classical character of the correlations

    Two-axis-twisting spin squeezing by multi-pass quantum erasure

    Get PDF
    Many-body entangled states are key elements in quantum information science and quantum metrology. One important problem in establishing a high degree of many-body entanglement using optical techniques is the leakage of the system information via the light that creates such entanglement. We propose an all-optical interference-based approach to erase this information. Unwanted atom-light entanglement can be removed by destructive interference of three or more successive atom-light interactions, with only the desired effective atom-atom interaction left. This quantum erasure protocol allows implementation of Heisenberg-limited spin squeezing using coherent light and a cold or warm atomic ensemble. Calculations show that significant improvement in the squeezing exceeding 10 dB is obtained compared to previous methods, and substantial spin squeezing is attainable even under moderate experimental conditions. Our method enables the efficient creation of many-body entangled states with simple setups, and thus is promising for advancing technologies in quantum metrology and quantum information processing.Comment: 10 pages, 4 figures. We have improved the presentation and added a new section, in which we have generalized the scheme from a three-pass scheme to multi-pass schem
    • …
    corecore